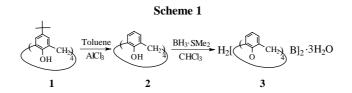
Synthesis and Characterization of Boron Complex of Calix[4]arene

Kui LU, Yang Jie WU*, Zhi Xian ZHOU

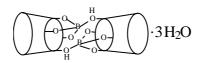

Department of Chemistry, Zhengzhou University, 450052

Abstract: A new boron complex of calix[4]arene was synthesized by the reaction of calix[4]arene with BMS; and the structure of the product was characterized by IR, ¹HNMR, ¹³CNMR, ¹¹BNMR and MS spectra.

Keywords: Boron complex; calix[4]arene; synthesis; characterization.

It has been shown that calixarenes can perform selective ion transport and form neutral complexes with cations through proton loss¹. Olmstead reported² the synthesis and X-ray crystal structures of Titanium (IV), Iron (III) and Cobalt (II) complexes of *p-tert*-butylcalix[4]arene and found that a complete exchange of all four OH groups in *p-tert*-butylcalix[4]arene took place when treated with Ti (NMe₂)₄ to give the aryloxo complex [{Ti (*p-tert*-butylcalix[4]arene)}₂]·6PhMe which may be formally described as a centro-symmetric titanium aryloxide dimer consisting of two Ti (*p-tert*-butylcalix[4]arene) units.

We have studied on the synthesis and properties of a series of calixarenes bearing boronic acid units on the lower rim and on the upper rim, and found that they had special coordination with carbohydrates³. In our attempt to conduct researches further into structures and properties of calix[4]arenes containing boron moiety and to find the highly selective and effective ligand for coordination with some special compounds, a new boron complex of calix[4]arene **3** was obtained as a white solid in 90% yield by the reaction of calix[4]arene **2** with BH₃·SMe₂ (BMS) in CHCl₃ (**Scheme 1**).


The structure of **3** was confirmed by elemental analysis, IR, MS, ¹HNMR, ¹³CNMR, ¹¹BNMR spectra and DSC, DTG analysis⁴.

By comparing the ¹HNMR spectrum of **3** with that of **2**, it was found that the peak for ArOH at $\delta 10.22$ was absent. The ¹¹BNMR spectrum of **3** displayed a peak at $\delta 21.77$, indicating that a reaction of **2** with BMS had occurred. The data of elemental analysis of

Kui LU et al.

3 were consistent with the proposed structure; and the mass spectrum (APCI–) of **3** showed a peak at m/z 863.6, confirming that **3** was a dimer. An analysis of DSC and DTG showed that **3** lost water at 188.9° C-239.4 °C, and the weightloss was 5.69%, indicating that there were three molecules of water of crystallization in **3**. The IR spectrum of **3** displayed a wide and strong band at 3200cm⁻¹ which was indicative of water. From the data specified above, it can be seen that the structure of **3** may be such a centrosymmetric dicalix[4]arene as depicted in **Figure 1**.

Figure 1.

Compound **3** probably has special selectivity for cation because there are two cavities in its molecule. A preliminary study of ion-selective electrode analysis has shown that **3** has very high selectivity for lithium cation.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (29372069) and the Natural Science Foundation of Henan Province for their financial support to this research.

References and Notes

- 1. R. M. Izatt, J. D. Lamb, R. T. Hawkins, et al. J. Am. Chem. Soc., 1983, 105, 1782.
- 2. M. M. Olmstead, G. Sigel, H. Hope, et al. J. Am. Chem. Soc., 1985, 107, 8087.
- 3. K. Lu, Y. J. Wu, Z. X. Zhou, et al. to be publish.
- 4. ¹HNMR (CD₃COCD₃): δ 7.269-7.250 (d, J=7.6Hz, 16H, ArH), 6.809-6.771 (t, J=7.6Hz, 8H, ArH), 4.020 (s, 16H, ArCH₂Ar). ¹³CNMR (CD₃COCD₃): δ 148.78, 128.96, 128.36, 121.91 (Ar-C), 30.71 (ArCH₂Ar). ¹¹BNMR (CD₃COCD₃): δ 21.77. IR (KBr): 3200 (s), 1608 (w), 1466 (vs), 1450 (vs), 1299 (m), 1245 (s), 1198 (s), 1078 (m) cm⁻¹. MS (APCI–): m/Z 863.6. mp 310-313 °C. Anal. Calcd for C₅₆H₄₂O₈B₂·3H₂O: C, 73.22, H, 5.27. Found: C, 73.32, H, 5.37.

Received 19 August 1998